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Abstract
We give an analytical formula in term of continued fraction expansions for the
spectral function of a tunnelling electron, coupled to a local lattice oscillation, in
a two-site cluster at non-zero temperature. We also study the spectral function
of the polaron, a better defined quasi-particle in the anti-adiabatic regime and
at sufficiently low temperature. The exact results obtained allow us to look
into a wide range of temperature and coupling. Asymptotic results can be
obtained directly from the continued fraction expansions in both adiabatic and
anti-adiabatic regimes. In the intermediate/strong anti-adiabatic case, in contrast
to the usual Lang–Firsov approximation scheme, we found that there is no
shrinking of the polaron band as temperature increases. Polaron bandwidth gets
broader by temperature effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tunnelling of a charge between localized sites, in a crystal or a molecular system, can be
severely affected by coupling with optical phonon modes. The competition between kinetic
energy of the charge and localization effects due to local coupling with phonon produces the
small polaron, i.e. a charge dressed by a cloud of multiphonon processes, when the latter
prevails.

To have a small polaron we thus must have a short-range electron–phonon interaction
and narrow bands [1, 2]. In fact, if the crystal can be considered as made of strongly
deformable molecular-like units with narrow-band electrons hopping from one to another, then
the conditions for a strong polaron effect can be achieved [2]. In realistic structures, for example
transition metal oxides or organic metals, such units exist which provide local (oscillation)
phonon modes and are indeed strongly coupled to well defined electronic orbitals.

The concept of small polaron, introduced in the aforementioned cases of solid state
physics, is also relevant in the physics of organic materials. In this case, molecular units
leading to very narrow bands are easily realized, e.g. the case of organic polymers [3] in which
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bandwidth is of the order of eV. In the case of sufficiently pure acene crystals [4], very narrow
bands are also found, due to extremely weak Van Der Waals forces between the molecular
units. Here the typical bandwidth is of the order of few hundreds of meV. In these compounds
we can approach the anti-adiabatic regime—in which phonon frequencies becomes of the order
of the bandwidth—inaccessible in solid state physics. Small polaron effects have been recently
invoked to explain exciton motion in photosynthetic light-harvesting systems [5] and charge
motion in DNA [6, 7]. In these cases ‘bands’ are so narrow and ‘disorder’ due to the presence
of different kind of molecular units (e.g. bases in DNA) is so large that at room temperature the
motion is essentially hopping-like and localization effects are very important.

For these reasons, it is interesting to span the largest region of coupling constant strength as
well as phonon frequency and temperature to characterize the polaron formation which occurs
as a crossover [8] in all regimes.

To accomplish this task, we study, with analytical methods, dynamical properties of a two-
site cluster which is the minimal system in which competition of hopping between two sites
and phonon localization effects takes place. This competition is crucial to describe properly
the polaron crossover as a function of the electron–phonon coupling constant. For this reason
the two-site systems have been extensively studied since the pioneering work of Holstein [2].
Ground state properties [9–13] along with spectral properties [16, 9, 14, 15] have been studied
using both numerical [9, 14, 10] as well as analytical methods [16, 12, 13]. Also for its
simplicity, the two-site cluster has been studied in more involved problems, such as polaron
formation in the presence of double exchange [17] or in the presence of on-site electronic
repulsion [18]. It is worth mentioning also the relevance of the two-site system in the high
temperature case, where the coherence is lost in a single tunnelling [19]. The two-site system
can also form the building block for a cluster approximation [20].

In this paper, we shown an analytical method that can be applied in the non-zero
temperature case, which was formerly investigated by the path integral approach [21]. We
obtain electron spectral properties, as well as the phononic displacement distribution function,
and we compare this information to investigate the polaron crossover as a function of the
various parameters and of the temperature. We also compare electron and polaron Green
functions to quantitatively determine whether the polaron is the tunnelling quasi-particle, and
how the temperature affects these dynamical properties.

The paper is organized in sections. The model is introduced in section 2 and solved in
section 3. In section 4 are reported the results at T = 0 and T > 0 respectively. Section 5 is
devoted to conclusions. Appendices report the calculations.

2. The model and its limiting regimes

The model describes an electron, in the tight binding approximation, moving in a two-site
lattice and interacting with it by the local distortion of the lattice site. The Hamiltonian is [11]

H = −J (c†
1c2 + c†

2c1)+ ω0(a
†
1a1 + a†

2a2)− g[c†
1c1(a

†
1 + a1)+ c†

2c2(a
†
2 + a2)] (1)

c†
j and a†

j are, respectively, the electron and phonon creation operators. The strength of the
electron–phonon interaction is given by the constant g, J is the electron hopping integral and
D = 2J is the tight binding half-bandwidth. Here we only consider one dispersionless phonon
per site with frequency ω0.

We can reduce the degrees of freedom introducing the coordinates corresponding to the
centre of mass and the relative displacement. The centre of mass Hamiltonian consists in a
displaced oscillator and can be separated from the part depending on the relative coordinate
(a = (a1 − a2)/

√
2). In the following discussion we shall limit ourselves to study only the
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latter

H = ω0a†a − Jσx − g̃σz(a
† + a). (2)

In (2) g̃ = g/
√

2 and a pseudo-spin notation has been used by introducing the Pauli
matrices σz = c†

1c1 − c†
2c2 and σx = c†

1c2 + c†
2c1.

The Hamiltonian (2) has a very general form and, even if it has been derived for a two-site
cluster, it is suitable to describe a very wide class of problems (for example a two-level system
interacting with a single optical mode [16]).

Beside the temperature, we can choose two parameters that characterize the model: (i)
the bare e–ph coupling constant λ = g2/(ω0 J ) given by the ratio of the polaron energy
(Ep = −g2/ω0) to the hopping J and (ii) the adiabatic ratio γ = ω0/J . In terms of these
parameters we can define weak coupling λ < 1 and strong coupling λ > 1 regimes as well as
adiabatic γ < 1 or anti-adiabatic γ > 1 regimes. Notice that, in the so called atomic (J = 0)
limit, the coupling’s strength is better described by another constant, i.e. α = √

λ/(2γ ).
In the atomic limit the Hamiltonian is diagonalized by the so-called Lang–Firsov (LF)

transformation [22]

D = eασz (a†−a). (3)

This transformation shifts the phonon operators by a quantity α, while the electron operator is
transformed into a new fermionic one associated with a quasi-particle, called a polaron, with
energy Ep. It can be shown that α2 is the mean number of phonons in the polaron cloud.

By applying the LF transformation H̄0 = D† H0D, the atomic Hamiltonian H0 =
ω0a†a − g̃σz(a† + a) becomes

H̄0 = ω0a†a + Ep/2, (4)

the eigenvalues En = ω0n + Ep/2 correspond to the twofold degenerate eigenvectors
|ψ j

n , j〉 = D|n, j〉 = c̄†
j |n〉, where the index n = 0, . . . ,∞ refers to the phonon number,

j = 1, 2 to the electron site number and c̄†
j is the polaron creation operator c̄†

j = Dc†
j D† =

c†
j exp{(−1) jα(a† − a)}.

In the case of finite J , the hopping term is not diagonalized by (3) and the new Hamiltonian
H̄ = D† H D becomes

H̄ = ω0a†a − J (σx cosh(2α(a† − a))+ iσy sinh(2α(a† − a)))+ Ep/2. (5)

Depending on the choice of the parameters, the problem could be better described by an
electron or polaron excitation picture. In particular, in the weak coupling limit, both the small
polaron and the electron are good quasiparticles while, in the intermediate and strong coupling
regimes, the polaron behaviour prevails [23]. For this reason it is useful to consider the spectral
properties of both particles.

We consider the following electron Green’s function:

G(el)
i, j (t) = −iθ(t)

∑

n

e−βω0n

Z0
〈n|ci (t)c

†
j |n〉 (6)

or, explicitly,

G(el)
i, j (t) = −iθ(t)(1 − e−βω0)

∑

n

e−βω0n〈n; 0|ci e
−i(H−ω0n)t c†

j |0; n〉 (7)

where Z0 = (1 − e−βω0 )−1 is the phonon partition function. G(el) measures the amplitude of
the process in which an electron is initially injected into site j and then destroyed at time t on
site i .
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In a similar way we can introduce a polaron Green’s function by creating and destroying a
polaron

G(pol)
i, j (t) = −iθ(t)

∑

n

e−ω0nβ

Z
〈n|c̄i (t)c̄

†
j |n〉 (8)

or

G(pol)
i, j (t) = −iθ(t)(1 − e−βω0)

∑

n

e−ω0nβ〈n|ci e
−i(H̄−ω0n)t c†

j |n〉. (9)

Another meaningful quantity is the phonon distribution, defined as

P(x) = 1

Z
tr[e−βH |x〉〈x |] (10)

in this case Z is the partition function of the whole system. In term of this function we can
characterize the polaron crossover as given by the transition between a monomodal and a
bimodal P(x) [17, 24, 25].

Let us consider separately the adiabatic and anti-adiabatic regimes. The anti-adiabatic case
was first studied in the small J perturbation regime [2, 26] and in the Holstein-Lang–Firsov
approximation (HLFA) [2, 22], where an effective Hamiltonian is introduced to eliminate
the phonon states. In HLFA, J is substituted by an effective hopping integral, obtained by
averaging the displacement exp [2α(a† − a)] on the thermal distribution of phonons. The
resulting effective hopping integral is J̃ = J exp(−2α2 coth(βω0/2)). At zero temperature
the well known exponential reduction of the bandwidth is obtained J̃ = J exp(−2α2), while
the more the temperature is increased (T/J � γ ) the quicker the bandwidth decreases. This
approximation is usually referred to the regime where the diagonal transitions (in which all the
phonon occupation numbers remain the same during the hop) prevail. In this case, the inelastic
processes are irrelevant and the motion of the quasiparticle remains coherent. We shall see that
this is a good approximation at zero temperature but it becomes inadequate at finite T , where
incoherent processes turn out to be important.

This fact was already pointed out in [14], where it was shown that, in the polaronic
regime, the average kinetic energy, at low temperatures, goes up as temperature increases. In
this paper we shall return to this point by studying the fermionic spectral functions, showing
that at zero temperature the spectral weight is all concentrated in a renormalized band (here
consisting in two poles only) according to the HLFA. As soon as the temperature increases,
other poles appear, due to the incoherent scattering processes, while the original band remains
exactly the same, even if its spectral weight diminishes. This means that renormalization of
coherent processes is independent of temperature, but its cross section decreases till it becomes
comparable to or smaller than the one of the incoherent processes.

It is important to notice that the HLFA refers only to the lower energy band. The vibrational
degree of freedom gives rise, in the atomic limit, to a ‘comb’ of resonances corresponding to
the excitation of a specific number of phonons. Each of these resonances is split in two as soon
as the hopping is turned on. Obviously the HLFA does not say anything on the bandwidths of
these higher energy resonances. For this purpose, a perturbative approach with respect to J can
give a suitable indication (see appendix C). As we can see from (36) and (37), at T = 0 the
poles are given by ωm = ω0m − g2

2ω0
± J fm,m(2α), so the nth band has a width equal to

J̃m = J | fm,m(2α)| = 2e−2α2 |Lm(4α
2)| (11)

where J̃0 = J̃ . It is interesting to notice that, for fm,m ’s sign being dependent on α, the
eigenvalues of each band can cross each other (as stressed in [28, 27]). Is worth noting that the
monotonic exponential decreasing of the bandwidth is only a feature of the first band, while in
the higher energy cases a more complex behaviour appears.
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The adiabatic case is another widely studied regime [11, 2, 26]. In the adiabatic limit
(γ = 0) the eigenvalues of Hamiltonian (2) can be expressed through the classical displacement
x

E±
r (x) = 1

2 kx2 ± √
((g/	)2 + J 2) (12)

where 	 is the harmonic oscillator characteristic length and k the spring constant. The lowest
branch (−) of (12) defines an adiabatic potential which has a minimum at x = 0 as far as λ < 1,
while for λ > 1 it becomes a double well potential with minima at x0 = 	

√
2α; in this case

the electron is mostly localized on a given site. The quantum fluctuations are able to restore the
symmetry in analogy to what happens for an infinite lattice [29]. It is worth noticing that, in this
limit, Hamiltonian (2) is equivalent to the adiabatic version of the spin-boson Hamiltonian [30].

Even if the adiabatic approximation is a good description for a slow phonon, at very low
temperature it does not take quantum fluctuations of phonons into account. This point will be
widely examined later on.

In this work we present an exact solution also at finite temperature in every regime.

3. Diagonalization in the fermion space

As shown by Fulton and Gouterman [31], a two-level system coupled to an oscillatory
system in such a manner that the total Hamiltonian displays a reflection symmetry may be
subjected to a unitary transformation which diagonalizes the system with respect to the two-
level subsystem [32, 33, 31]. This method can be generalized to the N-site situation, if the
symmetry of the system is governed by an Abelian group [33].

In particular, an analytic method for solving the two-site Holstein model is given in [17].
Here the Hamiltonian is diagonalized in the electron subspace by applying a Fulton–Gouterman
(FG) transformation to obtain a continued fraction expansion of the solution. In this framework,
the analytical form for the electron Green functions was easily computed as well as the
displacement probability distribution. Another continued fraction approach without FG
transformation has been reported in [16].

In this section we generalize these results, extending them to the finite temperature
case. Moreover, the polaron Green functions are studied by the introduction of another FG
transformation. Even if this case is indeed formally solvable in the same way as the electron
one, the final result is not suitable to be numerically implemented for an exponential increasing
of its complexity. It will be thus useful to diagonalize the transformed Hamiltonian HLF, instead
of the original one, in the fermion subspace.

By applying the FG transformation

V = 1√
2

(
1 (−1)a

†a

−1 (−1)a
†a

)
, (13)

the new Hamiltonian H̃ = V H V −1 becomes diagonal in the electron subspace

H̃ =
(

H+ 0
0 H−

)
(14)

the diagonal elements, corresponding to the bonding and antibonding sectors of the electron
subspace, being two purely phononic Hamiltonians

H± = ω0a†a ∓ J (−1)a
†a − g̃(a† + a) (15)

with the eigenvalue equation associated

H±|φ±
k 〉 = E±

k |φ±
k 〉. (16)
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The operator (−1)a
†a is the reflection operator in the vibrational subspace and it satisfies the

condition (−1)a
†aa(−1)a

†a = −a. The transformation (13) modifies the states as shown below

V | j ; n〉 = (−1)n( j−1)

√
2

(|1〉 + (−1) j |2〉) |n〉 (17)

where j = 1, 2 denotes the site index. The set of eigenvectors of H is given by

|ψ±
k 〉 = 1√

2

[
(−1)a

†a|2〉 ± |1〉
]
|φ±

k 〉. (18)

A wide study of the eigenvalue problem was carried out in [27] both numerically and
analytically by a variational method, extending the former results given in [28]. In [27] H±
is approximatively diagonalized by applying a displacement, the dynamics is reconstructed by
the calculated eigenvectors and energies.

Using the notation adopted in appendix A, we can expand the Fock states in the H±
eigenvector basis

|n〉 =
∑

α

√
γ±
α,n|φ±

α 〉. (19)

In this form the electron Green function can thus be expressed in terms of diagonal elements of
the resolvent operator only, defined as

G±
m,n(ω) = 〈m| 1

ω − H±
|n〉. (20)

More explicitly

G(el)
1,1 (ω) = (1 − e−βω0 )

2

∑

n

e−ω0nβ[G+
n,n(ω + ω0n)+ G−

n,n(ω + ω0n)] (21)

G(el)
2,1 (ω) = (1 − e−βω0 )

2

∑

n

(−1)ne−ω0nβ[G+
n,n(ω + ω0n)− G−

n,n(ω + ω0n)]. (22)

We note that the Hamiltonians (15) are tridiagonal in the Fock basis and then the inverse
matrix elements are suitable to be expanded in a recursion form; an extended treatment on
the inversion of tridiagonal matrices is given in [34]. In particular, the diagonal elements G±

n,n
can be evaluated by a very rapidly convergent recursion obtained by the following continued
fraction expansion:

G±
n,n(ω) = 1

ω − nω0 ± J (−1)n −�±(ω)
(23)

where �±(ω) = �±
em(ω) + �±

ab(ω) is the sum of the contribution given by the emitted and
absorbed phonon. The explicit form of �±

em and �±
ab and other details are given in appendix A.

It is worth stressing that (23) is the analytical exact expression of the electron’s Green
function for any finite temperature. The continued fraction method also permits us to evaluate
the eigenvectors, starting from the knowledge of the eigenvalues (i.e. the poles of any elements
G±

m,n) (see appendix A).
In the same way we can assess the probability distribution function for the displacement

operator (10)

P(x) = 1

Z
tr[e−β H̃ V |x〉〈x |V −1]. (24)

Recalling that (−1)a
†a|x〉〈x |(−1)a

†a = | − x〉〈−x | we obtain

P(x) = 1

2Z

∑

α

e−βE+
α (|φ+

α (x)|2 + |φ+
α (−x)|2)+ e−βE−

α (|φ−
α (x)|2 + |φ−

α (−x)|2)]. (25)
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The evaluation of the polaron Green function can be done on the same footing, but the
expression also involves the non-diagonal elements of the resolvent operators, causing an
exponential increase of the numerical calculations.

To avoid this problem, we first perform the LF transformation and then apply, on the
resulting Hamiltonian (5), a different FG transformation

V1 = 1√
2

(
1 −(−1)a

†a

(−1)a
†a 1

)
. (26)

The new Hamiltonian H̃LF = V1 H̄ V −1
1 is

H̄LF =
(

H̄+ 0
0 H̄−

)
(27)

where

H̄± = ω0a†a + J (−1)a
†ae∓2α(a†−a) + Ep/2 (28)

is real and symmetric but not tridiagonal in the basis of the harmonic oscillator; the matrix
elements of H̄± are given in appendix B. In this case, a continued fraction expansion is not
possible but an exact diagonalization can be done even with a very large number of phonons.
The states become

V1|n, j〉 = (−1)n j

√
2

(
(−1)( j−1−n)|1〉 + |2〉) |n〉. (29)

In analogy with the case of the electron, discussed above, the polaron Green function can be
expressed in terms of the resolvent

Ḡ±(ω) = 〈n| 1

ω − H̄±
|n〉 (30)

obtaining a more practical expression

G(pol)
1,1 (ω) = (1 − e−βω0)

2

∑

n

e−ω0nβ
[
Ḡ+

n,n(ω + nω0 + Ep/2)

+ Ḡ−
n,n(ω + nω0 + Ep/2)

]
(31)

G(pol)
2,1 (ω) = (1 − e−βω0)

2

∑

n

(−1)ne−ω0nβ
[
Ḡ−

n,n(ω + nω0 + Ep/2)

− Ḡ+
n,n(ω + nω0 + Ep/2)

]
. (32)

Spectral function can be defined for both electron and polaron as

A(k, ω) = − Im

2π
(G1,1(ω)± G2,1(ω)) (33)

where the + sign is taken for the reciprocal lattice vector k = 0 and − for k = π .

4. Results

At finite temperatures, the polaron crossover moves toward larger value of the coupling due
to the increasing importance of thermal fluctuations as can be seen from figure 1. At large
temperatures T/J � γ the adiabatic result is approached. The γ = 0 crossover line can be
obtained analytically, exploiting the bimodality condition for P(x). In the adiabatic limit we
get from (12)

P(x) ∝ exp(−E−
r /T )+ exp(−E+

r /T ). (34)
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 1  10

T
/J

λ

γ=0.0
γ=0.1
γ=1.0

γ=10.0

Figure 1. Lines separating monomodality (on the left) from bimodality (on the right) of P(x).
Arrows indicate the T = 0 crossover point.

The crossover temperature Tx can be obtained from the relation d2 P(x)/dx2 > 0 at x = 0,
giving

Tx = J

tanh−1(1/λ)
. (35)

A crude estimation of the crossover temperature can be done comparing the polaronic
displacement x0 and the thermally induced fluctuations which gives asymptotically Tx � Jλ.

Quantum fluctuations are only effective for T/J < γ ; they shift the polaron crossover
toward larger values of λ. Notice a re-entrance of Tx which is present for all displayed values
of γ . This phenomenon is rather general [35] and can be ascribed to the relevance of quantum
fluctuations as far as T/J < γ , leading to a stabilization of the non-polaronic character of the
phononic wavefunction.

Now let us examine the spectral functions as given by equations (21), (22), (31) and (32) in
the various regimes. We start with the anti-adiabatic case γ � 1 in weak (figure 2 lower panel)
and strong coupling (figure 2 upper panel). In this figures we have chosen a large Lorentzian
broadening to show the overall distribution of the spectral weight.

In both weak and strong coupling, we notice that, as temperature increases, electron
spectral function becomes rapidly broad, while polaron spectral function remains peaked
around ground state energy. The difference between weak and strong coupling is evident at
low temperature, where the distribution of the electronic spectral weight has the well known
Poissonian shape, centred at the polaron energy from the ground state. Notice that the small
resonances which appear at twice the polaronic energy in the polaron Green function are effects
of the hopping term J since for J = 0 the polaron Green function is single peaked at ω = Ep.

In figure 3, the polaronic band, i.e. the peak at Ep in figure 2, is resolved, using a smaller
Lorentzian broadening, in weak (lower panel) and strong (upper panel) coupling. Here, the
effects of temperature are evident in both electron and polaron DOS, but in a different way
at small and large couplings. At small coupling thermal fluctuations excite poles inside the
zero temperature band (marked by the vertical lines in figure 3). In this regime, the T = 0
bandwidth is accurately predicted by the HLFA. As temperature increases HLFA predicts band
narrowing. This behaviour is reproduced by the data through a redistribution of the spectral
weight inside the T = 0 band.
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Figure 2. Electron and polaron DOS for γ = 10.0 and λ = 40 (top panels) λ = 10 (bottom panels).
A Lorentzian broadening δ = 2J has been used. The polaronic spectra is essentially temperature
independent.

In contrast, at strong coupling (figure 3 upper panel) the low energy bandwidth seems
to increase rather than decrease as predicted by the HLFA. This is a general behaviour
since it was also found solving an infinite lattice problem using dynamical mean field theory
(DMFT) [8]. However, we shall notice that the correct interpretation of Holstein’s results is that
the coherence of the polaron band is lost as long as the temperature increases. Further to DMFT
results, this statement must be interpreted as the coherence of the low energy states decreasing
with the temperature. This does not imply that the total bandwidth, i.e. the bandwidth of
the coherent and incoherent states, decreases. It rather increases as temperature increases [8].
The mechanism of excitation of low energy poles can be understood from the continuous
fraction expansion (A.2), (A.3) of the Green function (23). In the J = 0 limit, from (4),
the zero temperature spectral function shows typical multiphonon resonances of order m at
Em = Ep/2 + ω0m. At non-zero temperature, absorption processes of order n, taken into
account by �abs in (23), imply excitation of resonances at energies Em − nω0 from the mth
polaronic peak. This is an excitation of a state with m phonons which absorbs n phonons from
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Figure 3. The polaronic band varying temperature for γ = 10.0 and λ = 40 (top panels) λ = 10
(bottom panels). A Lorentzian broadening δ = 0.04J has been used. The contribution of k = 0
and k = π peaks to the total DOS is marked by vertical lines.

the bath. When n = m (and n 	= 0) this is a thermal contribution to the polaronic ‘band’. For
small hopping, an m phonon band, absorbing m phonons from the bath, do not contribute to
a pole exactly located at E0 but rather around E0, as can be seen in equations (21) and (22)
and from equations (31) and (32). As the temperature goes up the number of such excitations
increases as shown in figure 3.

Even in this case, the perturbative picture can help us to understand the mechanism better.
The electron spectral functions can be perturbatively calculated (see appendix C)

G(el)
1,1 (ω) �

∑

n,m

e−βω0n

2Z
f 2
m,n(−α)

[
1

ω − ω0(m − n)− J fm,m(2α)+ g2

2ω0

+ 1

ω − ω0(m − n)+ J fm,m(2α)+ g2

2ω0

]
(36)
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G(el)
1,2 (ω) �

∑

n,m

e−βω0n

2Z
f 2
m,n(α)

[
−1

ω − ω0(m − n)− J fm,m(2α)+ g2

2ω0

+ 1

ω − ω0(m − n)+ J fm,m(2α)+ g2

2ω0

]
. (37)

Starting from the poles of (36) and (37), it is clear that the incoherent contributions to the low
energy band can be estimated by J̃m , given in (11). The broadening of the band depends on
whether this contribution falls outside or inside the initial band. By an asymptotic expansion of
the Laguerre polynomials, it is easy to see that, for x � 0,

|Ln(x)| �
∣∣∣∣1 − 2n + 1

2
x

∣∣∣∣ (38)

and |Ln(x)| < L0(x) = 1. So, for sufficiently small α, we have J̃m < J̃0: each contribution
falls inside the band, the width of which remains the same. In the other asymptotic case,

|Ln(x)| � |x |n
n! > 1 (39)

so, for large α, J̃m > J̃0 and the band broadens. We should stress that an average electron
kinetic energy increasing with temperature has been found within the same model by Ranninger
and De Mello [14]. However, low energy spectral properties and average values are not directly
related, especially when only a small amount of the total spectral weight is contained in the low
frequency part of the spectrum.

As a conclusion, in the strong coupling adiabatic regime, the notion of a well defined
polaronic band is lost as can be seen from figure 4. Notice that by increasing temperature,
electron and polaron DOS tend to have the same shape, which is entirely determined by thermal
fluctuations.

The zero-temperature behaviour can be analytically explained starting by a continued
fraction expansion in the strong coupling limit (appendix D)

A(ω) = 1

J
√
πλγ

e− ω2−1
γ λ

√
ω2 − 1

�(|ω| − 1) (40)

with

ν = xg
√

2mω0

2J
. (41)

This result is equivalent to the adiabatic approximation [36]; indeed, (40) can be obtained
by averaging a Green’s function, at a given displacement x , over all possible displacements,
weighted with a Gaussian phonon distribution. It is worth noticing that we here recover the
adiabatic result as a limit of an exact formula.

Equation (40) gives two symmetric bands separated by a gap and having Gaussian tails
induced by phonon fluctuations [37]. Compared with the T = 0.1 exact result in figure 4,
the approximation well reproduces the higher energy band while it is less accurate for the
lower energy band where some poles are present within the bandgap predicted by the adiabatic
approximation.

5. Conclusions

In this work we have studied the spectral properties of the two-site Holstein model. We have
also studied the polaron crossover looking at the thermal phonon distribution P(x). By means
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Figure 4. Electron and polaron DOS γ = 0.1 and λ = 2 (top panels) λ = 0.5 (bottom panels). A
Lorentzian broadening δ = 0.1J has been used.

of a generalization of the Fulton–Gouterman transformation, the phonon and electron degrees
of freedom are separated and it is possible to obtain exact analytical results at both zero and
finite temperatures and for any coupling strength.

Polaron crossover, identified by means of bimodality in P(x), strongly depends on the
adiabaticity ratio γ . In the adiabatic regime γ < 1 quantum fluctuations are effective when
temperature is lower than the phonon frequency, leading to a shift of the crossover toward
larger coupling. Generally speaking, we found that phonon distribution behaviour, within the
two-site model, bears a strong resemblance to that found in an infinite size lattice, e.g. by
DMFT analysis [38, 35]. The essential features captured by the two-site model is, in this
case, the competition between hopping and localization due to local interaction with phonon.
The fact that in an extended model electron the spectrum is continuous does not seems to be
qualitatively important for the behaviour of P(x).

In contrast, the electron spectrum of an infinite lattice is very different from that of a
two-site model. Nonetheless, some overall features are also present in our case. First of all,
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we found that the validity of the HLFA for the polaron bandwidth is restricted to the low
temperature anti-adiabatic regime, as was also found in the infinite lattice case [8]. This is
the case in which, at low temperature, the charge behaves as a coherent polaron, as we have
demonstrated by comparing the electron and polaron Green function. On the other hand, in the
adiabatic case, the polaron is highly incoherent. The HLFA approximation well works at large
temperatures in weak coupling also. Here, the shrinking of the polaron band, predicted by this
theory, is found in a two-site system as the emergence of poles inside the k = 0 k = π two-site
band.

On the other hand, at strong coupling, contrary to Holstein’s prediction, no low energy
‘band’ shrinking has been observed, while an increasing of it seems to occur by increasing the
temperature. The broadening of the low energy bands is revealed in the two-site model as a
spectral weight spreading over an increasing number of poles, but has also been found in an
extended system studied with DMFT [39]. Such a broadening observed in the spectral function
also has a deep impact in transport properties [40], where it rules the temperature at which
activation processes dominate the transport [40].

We have explained the band broadening in terms of the continued fraction expansion as an
effect due to the presence of a finite hopping on the thermal absorption of phonons. We guess
that the Holstein’s results must be interpreted in terms of coherence of states rather than band
amplitude. To quantify this conjecture we must measure a degree of coherence for a two-level
system coupled to a phonon. Work in this direction is currently in progress.
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Appendix A. Continued fraction expansion

It can be proved [41, 34] that the elements of the inverse of a tridiagonal matrix have a
continued fraction form. This result is commonly used to evaluate the resolvent operator of
a tridiagonal Hamiltonian [42, 8, 17]. The advantage is that the recursion formula obtained is
rapidly convergent and no diagonalization has to be done. In particular, the Hamiltonian (15)
is tridiagonal in the Fock basis and every element of the resolvent (20) can be evaluated. In our
case, we are interested only in the diagonal elements whose continued fraction expression is

G±
n,n(ω) = 1

ω − nω0 ± J (−1)n −�±
em −�±

ab

(A.1)

where �em and �ab are, respectively, the self-energy contribution from the emitted and
absorbed phonons; they can be expressed again as a continued fraction

�±
em = (n + 1)g̃2

ω − (n + 1)ω0 ± J (−1)n+1 − (n+2)g̃2

ω−(n+2)ω0±J (−1)n+2− (n+3)g̃2

ω−(n+3)ω0 ∓J (−1)n+3−···

(A.2)

�±
ab = ng̃2

ω − (n − 1)ω0 ± J (−1)n−1 − (n−1)g̃2

ω−(n−2)ω0±J (−1)(n−2)− (n−2)g̃2

...− g̃2
ω±+J (−1)

(A.3)
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or in the recursive form

�±
em,p = (n + p)g̃2

ω + (−(n + p)ω0 ± (−1)n+p J )− �±
em,p+1

(A.4)

�±
em = �±

em,1

�±
ab,p = (n − p)g̃2

ω + (−(n − p − 1)ω0 ± (−1)n−p−1 J )−�±
ab,p+1

(A.5)

�±
ab = �±

ab,0 and �±
ab,n+1 = 0.

Both (A.2) and (A.3) can be expressed in the compact form

�±
p = bp

ω + a±
p −�±

p+1

. (A.6)

This recursion rule can be used to evaluate the coefficients γ±
α,n introduced in (19).

Consider the equation (A.1). Let ω∗ be one of the poles of the function, the self-energy can be
expanded around it

Gn,n(ω) � 1

(ω − ω∗)(1 − z±
em(ω

∗)− z±
ab(ω

∗))
(A.7)

where z = ∂�
∂ω

. So the weight for the pole is

γ±
k,n � 1

1 − z±
em(ω

±
k )− z±

ab(ω
±
k )
. (A.8)

Using (A.6) it is possible to estimate the derivate by another linearization

�±
p (ω) � bp

(ω − ω∗)(1 − z±
p+1(ω

∗))+ ω∗ + a±
p −�±

p+1(ω
∗)

(A.9)

z±
p = (z±

p+1(ω
∗)− 1)b±

p

(ω∗ + a±
p −�±

p+1(ω
∗))2

. (A.10)

Appendix B. Displacement operator in the Fock basis

In the Fock basis the displacement matrix elements 〈m|eα(a†−a)|n〉 = fn,m(α) are [43–45], for
m � n,

fn,m(α) = e− α2

2

√
n!m!

(m!) Lm−n
n (α2)αm−n (B.1)

where Ls
n̄(α

2) is an associated Laguerre polynomial

Lb
a(x) =

a∑

k=0

(−1)k(a + b)!
(a − k)!(b + k)!k!xk; (B.2)

taking into account that fn,m(α) = fm,n(α), the matrix is completely defined. From this result
it is possible to express the matrix element of the Hamiltonian (28)

〈m|H̄∓|n〉 = ω0nδn,m ± J (−1)m fn,m(±2α). (B.3)
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Appendix C. First order perturbative expansion in J

Starting from the atomic Hamiltonian (4) we introduce the hopping contribution in (5) as a
perturbation

H̄I = −J (c†
1c2e2α(a†−a) + h.c.). (C.1)

The zeroth order correction for the eigenstates and the first order for the energies is obtained by
diagonalizing the matrix

−J

(
0 〈n|e2α(a†−a)|n〉

〈n|e−2α(a†−a)|n〉 0

)
. (C.2)

The first order energy expansion is

E±
n � ω0n − g2

2ω0
± J fn,n(2α) (C.3)

where fn,n(2α) is given in (B.1). The zeroth order eigenstates are

|ψ̄±
n 〉(0) = 1√

2
(|1〉 ∓ |2〉) |n〉 (C.4)

and the first order correction is

|ψ̄±
n 〉(1) = − J√

2

∑

k 	=n

∓ fn,k(2α)|1〉 + fn,k(−2α)|2〉
ω0(n − k)

|k〉 (C.5)

so that

|ψ̄±
n 〉 � 1

N±
[|ψ̄±

n 〉(0) + |ψ̄±
n 〉(1)

]
(C.6)

where N± is a suitable normalization.
The electronic Green’s functions can be estimated first performing an LF transformation

G(el)
1,1 (ω) =

∑

n

e−βω0n

Z
〈n|c1 DR

1

ω − HLF + ω0n
D†

Rc†
1|n〉 (C.7)

G(el)
1,2 (ω) =

∑

n

e−βω0n

Z
〈n|c2 DR

1

ω − HLF + ω0n
D†

Rc†
1|n〉, (C.8)

where DR = eα(c
†
1c1−c†

2c2)(a†−a), and then using equations (C.3)–(C.5). In the Lehman
representation we have

G(el)
1,1 (ω) =

∑

n,m

e−βω0n

Z

[
|〈n|e−α(a†−a)c1|ψ̄+

m 〉|2
ω − E+

m + ω0n
+ |〈n|e−α(a†−a)c1|ψ̄−

m 〉|2
ω − E−

m + ω0n

]
(C.9)

G(el)
1,2 (ω) =

∑

n,m

e−βω0n

Z

[
〈n|eα(a†−a)c2|ψ̄+

m 〉〈ψ̄+
m |eα(a†−a)c†

1|n〉
ω − E+

m + ω0n

+ 〈n|eα(a†−a)c2|ψ̄−
m 〉〈ψ̄−

m |eα(a†−a)c†
1|n〉

ω − E−
m + ω0n

]
(C.10)

and, taking into account that

〈n|e−α(a†−a)c1|ψ̄±
m 〉 = 1

N+

[
fm,n(−α)± J

∑

k 	=m

fm,k(2α) fk,n(−α)
ω0(m − k)

]
(C.11)

〈n|eα(a†−a)c2|ψ̄±
m 〉 = 1

N−

[
∓ fm,n(α)− J

∑

k 	=m

fm,k(−2α) fk,n(α)

ω0(m − k)

]
, (C.12)

we obtain equations (36) and (37).
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Appendix D. Electron Green’s functions. Adiabatic strong coupling limit

In the limit ω0 → 0 and λ → ∞, starting from the continued fraction expansion (A.1), we
have

G±
0,0 = (ω ± J )F(ω) (D.1)

with

F(ω) = 1

ω2 − J 2 − g̃2(ω2−J 2)

ω2−J 2− 2g̃2(ω2−J 2)

ω2−J 2− 3g̃2(ω2−J 2)
...

. (D.2)

For T = 0 the electron Green’s function is

G1,1(ω) = ωF(ω). (D.3)

It can be shown [46] that
∫ ∞

∞
dε√
2π

e−ε2

z − ε
= 1√

2z − 1√
2z− 2√

2z− 3
...

= b√
2zb − b2√

2zb− 2b2
√

2zb− 3b2
...

; (D.4)

making the substitutions

b = g̃
√
ω2 − J 2 (D.5)√

2zb = ω2 − J 2 (D.6)

we obtain

F(ω) = 1√
ω2 − J 2

F(ω)
∫ ∞

∞
dε√
π

e−ε2

√
ω2 − J 2 − g̃

√
2ε

; (D.7)

the Green’s function becomes

G1,1(ω) = ω

J
√
πλγ

∫ ∞

−∞
dνe− ν2

γ λ
1

ω2/J 2 − 1 − ν2
(D.8)

with ν given in (41).
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